
UI

EBOOK©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Simple strategies to enable legacy apps to meet the needs of mobile users.

Delivering Apps in
Smaller Parts

Progress 2

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Introduction
Most companies run their business on software. There are exceptions, such
as very small businesses, but in general if your company has more than one
employee, there’s at least one software application where the brains, or at least the
memory, of the business resides.

Larger businesses have many more moving parts, so there’s likely a lot more
software running the business. This software, depending on the company, can be:

• One large app (can anyone say SAP?)
• Several large apps
• One or more large and small apps (could be standalone or wired together,

who knows?)
• A bevvy of small apps (likely standalone, but could be cobbled together)
• Something between the other options (it’s the wild west out there, I’m telling

you)

If a large or medium-sized company is more than ten years old, chances are
a mobile workforce or a mobile customer base wasn’t even considered when
building all these applications, especially if the apps are home-grown. If the apps
are commercial offerings, then there may be mobile capabilities available from
the vendor, but for large apps (or large companies) it’s quite expensive and time
consuming to bolt all those mobile modules to existing applications.

Fast-forward to today, and the needs of your company’s workforce, partner
community, and/or customer base have changed. They aren’t chained to their
desks anymore, they’re out and about doing business. The purpose of this eBook
is to propose a simple solution to enable your non-mobile legacy business apps to
address the needs of these users.

https://www.progress.com/
https://www.progress.com/openedge

Progress 3

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Monolithic Apps
to the Rescue
No, not so much.

Sophisticated businesses run on big monolithic apps because they must, not
necessarily because they want to. When these businesses have:

• Multiple product lines
• Multiple divisions
• Complicated processes
• Deep partner or distributions channels
• Large workforces
• Large sales or support organizations

…the software that controls everything and keeps the business running smoothly
is massive, complicated, and consists of several interconnected systems.
Companies often refer to this class of software as Enterprise Resource Planning
(ERP) software. Running large businesses with independent software systems is a
nightmare, so that’s why companies rely on as few systems as possible.

Adding mobile users to the mix changes everything.

If your company deployed an ERP system or core business apps that support
mobile users as first-class citizens, then congratulations! You’re done here.

Now, for the rest of you...

If you think about it, the mobile world we live in isn’t really that old. Many people
inaccurately believe the world became mobile with the launch of the iPhone
in 2007 (which was only 12 years ago), but it started much earlier. Before that,
businesses enabled mobile workers with BlackBerry devices or put cellular radios
in laptops or personal digital assistants (PDAs) so employees could do business
while away from the office. In most cases, doing business on the road simply
meant having access to email while away from the office (BlackBerry) or using
the same big, clunky ERP application on your laptop wherever you were, using
the cellular radio to connect live, or sync with the home office, whenever you had
radio coverage.

BlackBerry users were fairly happy with the results, as they could stay in touch
no matter where they were. They weren’t running a lot of business apps on their
devices, but the world didn’t fall apart when they were away from the office. They

https://www.progress.com/
https://www.progress.com/openedge

Progress 4

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

at least knew what was going on and could manage mail, calendar and tasks on
their phone.

Laptop users were fairly happy as well, because they could at least get work
done when out of the office although for many it was only when they had a solid
cellular connection for their laptop. However, running your ERP system (or some
other business software) on your laptop while on the road doesn’t take into
consideration the needs of the mobile worker.

Those solutions were a stopgap, hacks implemented by companies to enable
mobile workers to do more when away from their desks, but it’s not enough.
Unless your business apps innately understand mobile users, you’re not delivering
the tools your employees, partners, and customers need to be successful while
away from their desks.

Addressing Mobile
Worker Needs
In general, the way an application user interacts with a business application
varies depending on the tasks they’re performing at the time and where they’re
performing the task. For example, processing monthly or quarterly reports is
probably in-the-office work, and checking the status of an order or monthly sales
number for a customer is need-to-know-something-now work.

You can refine if further and say that there’s even a difference in the types of
actions you’ll perform in an application depending on what you’re doing (or where
you are) in the office (at-my-desk tasks or in-a-meeting tasks). In-a-meeting tasks
are similar to on-the-road tasks, but likely only a subset. They’re typically get-an-
answer-to-something-now, or quickly-get-something-done tasks.

Now, that doesn’t mean that an office worker doesn’t look things up, or remote
workers don’t process stacks of paperwork. The point is that the needs of the
mobile worker are different than the needs of a desktop user.

Developers building business apps for mobile users must rethink their approach.
They can’t just bolt a mobile UI to an existing system, especially those systems
that have been around for a long time. Since the mobile users needs are different

https://www.progress.com/
https://www.progress.com/openedge

Progress 5

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

than the office user’s needs, bolting a mobile-friendly UI on an existing desktop
only makes the mobile user’s experience slightly better and may not be enough to
make users happy.

Few mobile users want or need every capability from the desktop version of the
app; what they need is just the app functionality required when they’re away
from their desks. Mobile users have no time for complicated menu systems or
long, multi-part forms. Instead, they want compressed workflows, smaller forms,
even voice command or chatbots to enable quicker interactions and faster time
to answers than what anybody can do with a monolithic app. They want one-
tap access to the app function they need. They want streamlined (compressed)
workflows that work the way they do—not the way the app, or the business, wants
it. They want fast, quick and easy, not big and slow.

Targeting User Roles
Another factor affecting how a user interacts with a business application is the
role a user has in the organization. Leaders, managers, sales, support, delivery,
warehouse, etc. may all use the same apps, but they use them in completely
different ways. Based on these roles, users may:

• Have different views of the data (including not being able to see some of the
data)

• Have different actions they can perform on the data
• Have different rights to the data
• Use completely different parts of the app

This requirement further complicates the task of enabling your business apps
for mobile users. Not only must you build the mobile friendly UI for the app, you
must also clearly understand each user’s role at runtime and apply all the required
permissions and workflow steps in the UI.

If your app uses a web UI, this shouldn’t be too challenging, since most of this
role-based permissions stuff is already baked into the existing app UI. For
more sophisticated or complicated apps, users will want a native mobile app,
and delivering all that on multiple platforms (likely Android and iOS) will be a
nightmare, especially when you add automated functional testing to the mix. More
on this in the Progress whitepaper, The Cost of an Enterprise Mobile Strategy.

https://www.progress.com/
https://www.progress.com/openedge
https://www.progress.com/campaigns/kinvey/cost-enterprise-strategy

Progress 6

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Supporting Workflows
and Events
Mobile app users are…mobile. They’re traveling from city to city, moving from
customer to customer, store to store, job to job. They’re not sitting at a desk,
staring at an email client looking for work to be done. They’re interrupt-driven .
That means these users expect the business apps supporting (or is it driving?)
them to tell them what needs to be done next.

Mobile users hop in and out of apps as needed during the day, because they’re
knee deep in workflows (sales, service, relationship management, partner
development). They’re not sitting in an app for hours, sifting through their work
backlog. They’re going in, figuring out what needs to be done next, doing it, and
backing out again.

This approach mandates that business applications understand the business
processes in play and deliver the quickest and simplest way to manage those
mobile workflows for the user.

Inside those workflows are events, something that moves a business process
from one workflow step to another. Events trigger automatically or manually:

• Time-based: such as contract renewals or scheduled maintenance
• Externally-triggered: parts or manufacturing raw materials arrive in a

warehouse, customer PO arrives, etc.
• Internal: checks cut, purchase orders generated, etc.
• Manual: a workflow participant completes a task

What triggers an employee’s participation in the next step in a workflow?
Notifications.

Many enterprise apps don’t do a great job at surfacing events and notifications
to users. They may use email as a notification mechanism, but that forces users
to work through their notification queue (their email inbox) to understand what
needs to be done next. If the user doesn’t prioritize their inbox correctly, they can
miss important notifications. On top of that, email notifications sounds are binary
(either on or off), so users can’t get custom notifications for higher priority items.

Emails are best for communicating text. When used for sending notifications
from systems, the included data is often inadequate and useless to act upon.
For example, an expense report submission that generates an email notification
including just the Report ID and a link to open the request in the expense

1 https://www.encyclopedia.
com/computing/dictionaries-
thesaur uses-pictures-and-
press-releases/interrupt-driven

https://www.progress.com/
https://www.progress.com/openedge

Progress 7

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

system, does not provide enough context to enable the recipient to make an
informed decision without context switching. That’s why most system-generated
emails end up migrating to a separate folder that we never open—making email
notifications next to useless for mobile users.

If you’re going to send me a notification, why not just send it directly to the
application I’ll use to dig into the details and act? Don’t send me generic data
expecting me to click over and work in the target app—send the notification
directly to the target app. Backend applications can send notifications to devices
that the device delivers directly to the user through the home screen in the
notifications area or directly to target applications. Since most mobile app users
limit the apps that can receive notifications, this guarantees that important
business notifications get the user’s attention.

Notifications sent directly to an app that displays an alert count on the application
home screen icon alerts the user to important items in the app that require their
attention. Users can customize notification alerts (vibration, sound played, etc.)
per app, enabling them to quickly configure just the right notification settings for
the apps that mean the most to them.

Addressing App
Complexity for Mobile
Users
As I’ve proven by now, monolithic enterprise apps have their place, but not on
mobile phones. Parts of the app, but just not all of it. So how do you deliver just
what mobile users need, when the need it, on their phones and tablets?

Microapps

One of the most challenging issues facing enterprise app developers is how
to transform large screen app pages to the smartphone’s smaller screens. I’m
proposing skipping that entirely, and instead, delivering small, self-contained app
parts to mobile users in a way that makes it easy for the user to just use the parts
they need when they’re mobile.

https://www.progress.com/
https://www.progress.com/openedge

Progress 8

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Each microapp encapsulates a single workflow or a specific part of a bigger
business workflow, quickly getting a mobile user to the work they need to get
done now. Modern enterprises build their catalog of microapps, hitting the
important tasks mobile users must address while away from the office.

Each user/role will likely have multiple microapps they use, with some overlap
across roles.

You probably won’t let users deploy them willy-nilly on their devices, as that just
takes too much work and will plunk a bevy of app icons on the user’s mobile
device home screen. You could use Mobile Enterprise Management (MEM) to
manage deploying microapps to user devices, but you still have the problem of
overloading users with too many app icons and grouping them together in a way
that makes sense for the user.

The best approach is to deploy microapps in a microapp container, a single app
that gives users quick access to all their deployed microapps. Within this app,
microapps display as a list of items or as a grid of app icons. To make microapps
and the microapp container work for them, users must be able to organize and
arrange their microapps in a way that makes the most sense for their way of doing
business. Just like you wouldn’t force a common structure for desktop icons on a
desktop computer, you can’t do it for mobile users either.

To trigger business workflow action, use mobile device push notifications, instead
of email, to deliver targeted notifications letting the user know when there’s
something they need to do in a microapp. These notifications go right the app,
instead of the corporate email sinkhole, so the user sees them directly connected
to the app where the work happens, to resolve items or keep workflows moving.

Notifications appear two different ways in the microapp container—as a badge
count on the microapp container home screen icon, letting users know how
many pending tasks await them inside the app. Next, inside the app, show the
appropriate badge counts on all microapps so the user can see and prioritize their
work in the apps that need their attention.

Earlier we discussed the relationship between workflows and events; workflows
trigger events that end up as notifications in a worker’s email inbox. Microapps
short-circuit this, connecting the notification directly to the app where the user
works.

The following table highlights some of the differences between big enterprise
apps and microapps.

https://www.progress.com/
https://www.progress.com/openedge

Progress 9

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Monolithic Apps Microapps

Everyone gets the same app Only what the user needs, based on their role

Notifications show up in a different app (email) Notifications show up in the app I use to resolve them

Can’t deep link from an email notification to the work I
need to do in the app

Opening the app gets me right to the work I need to do

Online only Can easily be offline enabled

Tailored for no one Tailored for me, or at least for my role

Navigate to where you need to be Jump right in

App has features you’ll never use Apps have only the features you’ll use

Multiple logins for different apps Single login for the container app

Disparate user experience, each app looks and acts
very differently

Unified user experience, feels like you are using just one
app

Don’t Throw Away the Old

Microapps are an extension of your existing enterprise apps; you won’t get rid
of any existing infrastructure and many of your desktop users will continue to
use the apps as they do today. Microapps are simply small, targeted sub-apps
targeting specific workflows or specific parts of larger workflows.

Don’t be confused—there are a lot of microservices articles circulating that show
how to split big tasks into smaller ones. What we’re talking about here is the
latest innovation in that journey for mobile apps. The apps use your existing app
infrastructure (you can only have one system of record, right?), so existing users
aren’t impacted, only mobile users get a better, more streamlined experience for
the same app.

Your existing app should expose the services (web services, most likely RESTful
services) your microapps consume to work within the framework of your existing
business app. If these services don’t exist, or you can’t access them from “outside”
the app, then you’ll have some work to do to build the services you need. If the

https://www.progress.com/
https://www.progress.com/openedge

Progress 10

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

services exist, but they’re not very mobile-friendly (for example if they’re SOAP-
based or send more data over the network than is needed for the microapp’s
needs), then you’re going to need your own services that piggyback on the
existing services exposed by your legacy app.

Just the Data You Need!

As mobile devices became more powerful and mobile networks pumped up the available bandwidth,
developers stopped caring about the impact their apps had on the device and network. Want to know why
your device battery won’t last a full day with heavy usage? The quality of mobile applications.

Mobile apps regularly get more data than they need from the servers and must discard data that should
never have been sent their way. This means additional charges for app users who have data limits on their
accounts or live in areas with limited bandwidth availability. They also get unprocessed data, forcing the app
to perform calculations or data transformations that should have been done on the server before sending
the data. This means increased load on the device processor, which impacts battery life.

Make a sign with the following and post it near your development teams as a reminder:

Rules for Mobile Developers:

1. Never send data to a mobile device that the device doesn’t need.

2. Minimize the amount of work a mobile app must do to render its data.

3. Look for ways to reduce your app’s impact on battery life, which means reducing processor and

network utilization.

Delivering on this requires smarter app architectures, and, honestly, just paying attention to everything
you put into your app. Look at every feature, no matter how small, with an eye to the feature’s impact on
processor utilization, memory, and network bandwidth consumption. Wherever possible, cut things back until
you can deliver on the feature’s requirements with the minimal impact on the device battery and network
utilization.

Building Smaller Apps

Okay, so how do you build microapps? Delivering these apps requires an intense
understanding of how users use your existing legacy apps, especially when these
users are outside of the office on mobile devices. This involves:

https://www.progress.com/
https://www.progress.com/openedge

Progress 11

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

• Identifying the key mobile roles using the app

• Surveying a representative sample of users in each role to gain a better
understanding of their needs

• Doing ride-alongs to watch key users at work, or looking over their shoulders
as they work from their desks

• Build workflow diagrams highlighting discrete tasks users perform in the app

• Review the workflow diagrams with a representative sampling of users in each
targeted role

• Stack rank workflow and role combinations so you know where to have the
biggest impact before you start building anything

Once you know how these apps are used by mobile workers, start designing the
app UIs for microapps addressing the most common workflows:

• Break legacy app flows and break them up into smaller parts

• Don’t try to deliver anything more than the minimum required for the task at
hand

• Look for ways to use voice control or bots to streamline workflows; there’s no
need for an app when answering a direct question from the user is enough

• Don’t worry about overlapping microapps (two apps that do almost the same
thing); if the user role requirements are slightly different, you’ll break things
(and create unhappy users) if you try to stuff two role/workflows through the
same microapp.

• Understanding which workflows are time-critical, and build the appropriate
notification strategy for those tasks.

Deliver just the parts of the app the user needs, nothing more, nothing less. You
can never have too many microapps, provided the microapps properly address
the needs of mobile workers and enable them to get more done faster.

Deliver just the right notifications as they happen and display them as simple
actionable forms. Be sure to build in an accommodation for snoozable alerts,
supporting tasks that are time-important, something that needs doing soon, but
not right away. You’ll create much happier users when your notification strategy

https://www.progress.com/
https://www.progress.com/openedge

Progress 12

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

understands task importance with more granularity.

With all this preparation work done:

• Select a platform that enables you to efficiently manage delivery and
management of microapps on mobile devices. Ensure that the deployment
and management framework adjusts its output based on user roles so users
only get what they need on their mobile devices.

• Build out the services your microapps need, keeping in mind the developer
rules outlined in the earlier sidebar

• Start building and deploying your microapps, targeting highest impact
areas first (looking for the highest productivity boost, or biggest impact on
employee satisfaction)

Be sure you have a system in place to measure the success of this work; there’s
no reason to do any of it if you can’t prove success or at least identify failures.
Available options include:

• Instrument microapps so you can capture when and how the workers use
microapps. Pay close attention to the paths users take through each microapp
and abandoned workflows, this creates a blueprint for the app’s next refresh.

• Survey users periodically (monthly, quarterly, etc.) looking for ways to improve
the quality of the delivered solution.

• Look for ways to measure pre- and post-deployment productivity for affected
users. Use the data you collect here to guide future work and budget.

• Provide a quick and easy feedback mechanism in your microapp or microapp
container; when users know you’re listening, they’ll give you an earful of useful
information.

Rework failed microapps or just kill them. If users won’t use one or more
microapps or aren’t successful using them, what’s the point of having them?

Listen to your users; you’re delivering microapps to make mobile workers more
successful or efficient while away from the office. If it’s not working, then you must
rethink your strategy. Are there not enough apps? Too many? Are the apps too
complicated? Too simple? Why isn’t this working?

https://www.progress.com/
https://www.progress.com/openedge

Progress 13

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Beyond the Core
Capabilities
In this article, we described how to build and deploy a suite of microapps designed
to create more efficient mobile workers. We talked about clearly understanding
user roles and delivering the apps designed to accommodate users in each role.

Flexible Deployment Options

Be prepared to accommodate outliers who don’t fit pre-conceived role models. In
some organizations, it may not make sense to view roles so rigidly. An option for
these organizations is to publish a microapp catalog and let users self-provision
the apps they need into the microapp container described earlier in this paper.
This lets users pick the ‘apps’ they need and is especially important for workers
who may have more than one role.

Tailoring Notifications

When building and deploying microapp solutions, be sure to make notifications
configurable. Users will have different pain thresholds, that point where
notifications stop being helpful and become irritating instead. Let users decide
what they want pinged on and what they don’t.

If possible, build your solution with an understanding of employee vacations
through integration with enterprise calendaring systems. Let users configure, at a
global level, different notification strategies depending on whether they’re marked
out of the office (and not working). For some users, that means no notifications
while on vacation, while for others this means only urgent notifications while on
vacation. One set of rules will not accommodate all use cases.

Also consider using that same calendar integration to mute all notifications during
meetings. Queue those notifications up and deliver them only when the calendar
shows the user isn’t otherwise occupied.

Notification Hierarchy

For some roles, or for certain customer issues, a simple notification to an on-
device app won’t be enough. For business or customer-critical events, consider

https://www.progress.com/
https://www.progress.com/openedge

Progress 14

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

enabling users to configure notifications using SMS or even phone calls. This
approach helps ensure that important notifications are seen in a timely manner.

Synchronize Across Devices

Survey your employees and you’ll quickly see that most carry more than one
mobile device. With that in mind, your microapp container should synchronize
its configuration across all devices associated with each user. This eliminates the
requirement to configure the user’s microapp layout multiple times.

The same holds true for notifications. Consider more flexible options for
notifications in multi-device environments:

• Notifications sent to devices sequentially (primary device first, then notify the
secondary device of the user doesn’t acknowledge the notification within a
specific timeframe (configurable, of course).

• Notifications sent to all devices

• Notifications sent to all devices and dismissed on all other devices when
acknowledged on a device

Streamlining Microapps
Disorganized development organizations have an issue with islands of code.
Smart organizations move to blocks of functionality.

Let me explain.

To gain efficiency (do less work), developers borrow software components,
algorithms and other stuff from different parts of the organization. If you have an
innersource program in place, you at least have a common place to share code
across the organization. If you don’t, your developers are copying and pasting
(C&P) code wherever they can get it.

C&P reuse is easy to do, and it has the added benefit that there’s limited future
impact for these developers - they copy the code, test it in place, and, if it works
today, it will likely continue to work (pending any dependent system changes).

https://www.progress.com/
https://www.progress.com/openedge

Progress 15

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Each app has its own copy of the code, and it’s maintained in place. If someone
finds a bug or a security vulnerability in the code, they just fix it and go on their
way. Unfortunately, that means that each team fixes their version of the copied
code—but only if they discover the issue before there’s a costly failure or an
embarrassing data breach.

That’s not the right way to run your business systems.

Development organizations that recognize the C&P approach in their
development work streams quickly work to find a better way. This leads to
building shared libraries and a mandate to use them in all corporate apps. The
library approach is a good one; the code’s written once, tested on a variety
of systems, bugs and feature requests filter back, and fixes and new features
eventually make it into the library. Building libraries requires more work as API
signatures and system architectures must be carefully thought out before coding
even starts. But delivering building blocks your developers can use to build their
apps is a much better approach than C&P. Some considerations for this approach:

• Shared libraries may make it into the new app, especially if there’s a company
mandate, but older apps rarely get fixed. This means that old, flaky code is still
running in your customer-critical applications and you don’t have the budget
to fix it.

• Systems built using incompatible development languages or platforms force
organizations to port libraries for these other targets. This dramatically
increases the cost of development, testing, and support for these libraries plus
extends release schedules to the point where some apps have the latest, best
libraries, but other apps are waiting for their version to go live.

Some organizations try to address the organization’s needs through a solid and
well-thought out API architecture. The thought being that the special sauce is in
the APIs and having an enterprise-wide catalog of APIs means everyone can use
them and maintenance and support resides in one place. Each API has a specific
purpose and is shared with one or more applications. With this in place, apps
reuse the data connections, algorithms, and other business logic encapsulated in
the API layer leaving more time to spend on the app UI and user experience.

APIs are backend architecture, apps must implement their own front-end or
client-side code to process the information returned from APIs. So, while APIs are
very useful to share backend functionality, they do nothing to deliver code reuse
for front-end development, skipping all together user interface elements, screens,
workflows, and data validation.

https://www.progress.com/
https://www.progress.com/openedge

Progress 16

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

A more robust approach to code reuse is Functional Sharing. Rather than share
one or more parts of a component implementation, with functional sharing, you
instead reuse the implementation of user goals, like “Search for a Customer”.
With this approach, share both frontend and backend components for maximum
benefit and maximum reuse. Functional sharing works in a microapp architecture
because each microapp contains everything it needs to complete the user goal.
Further, updates to the functionality are delivered to all users, skipping the work
needed to port the new feature in other apps. When you need functionality
from multiple microapps, wire them together, or wire the internal parts of them
together, to deliver something bigger than the sum of its parts. Since microapps
encapsulate a single action or transaction, updates are much easier to test and
deliver. This encapsulation ensures you’ll have less dependencies to manage!

Back-End Functionality

COPY & PASTE

APIs

APP 2

APP 3

APP 4

APP 1

Front-End Functionality

APP 2

APP 3

APP 4

APP 1

APP 2

APP 3

APP 4

API

https://www.progress.com/
https://www.progress.com/openedge

Progress 17

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Reuse at the Functional Level

To gain efficiency, application developers have approached sharing software
elements and processes in many ways. have shared functionality in different ways.
Each approach brings both benefits and tradeoffs.

Copy+Paste reuse is the easiest to do and has the least amount of future
dependencies. Each app gets a copy of the source code being shared. Since the
apps aren’t using the same piece of code this code will quickly get out of sync,
spreading bugs everywhere. A discovered bug must be fixed in all the places using
that source code. Additionally, any alteration to the code, whether a new feature or
some other adjustment must also be implemented in all the places using a copy
of the shared source code. Most developers will copy and paste code, but it’s not a
recommended approach for any serious architecture. Both front-end and back-end
code can be reused with copy and paste.

Another reuse approach is to package functionality into a library and share
the library with other applications. Most applications make use of one or more
libraries. This approach is encapsulated and makes library updates easier to
deliver. At the same time, building a library for sharing requires more design and
architecture effort than copy/paste. It is almost always the case the programming
language of the app must match the programming language of the library. In
polyglot departments using more than 1 programming languages, there is always
the chance functionality will need to be reimplemented in another programming
language causing inconsistencies as the applications diverge over time. Generally,
back-end source code is packaged into libraries though this is not always the case.

A third option for reuse that is very popular is to use an API architecture.
Applications connect to APIs for data and processing. Each API has a specific
purpose and is shared with one or more applications. Apps reuse the data
connections, algorithms, and other business logic encapsulated in the API layer.
APIs are considered a back-end architecture, the apps must implement their own
front-end or client-side processing to work with the information returned from the
API. So while APIs are very useful to share back-end functionality they do nothing
to help reuse of front-end development like user interface elements, screens,
workflows, and validation.

Functional sharing is a different approach to reuse. Rather than share parts of an
implementation, Functional sharing means reusing the implementation of a user
goal, like “Search for a Customer”. Both front and back end components are shared
for the maximum reuse. Functional sharing works in a micro app architecture
because each micro app contains everything it needs to complete the user goal.

https://www.progress.com/
https://www.progress.com/openedge

Progress 18

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Further, updates to the functionality are delivered to all users, skipping the work
needed to port the new feature in other apps. Micro apps can be implemented with
other languages and tie in to different data sources. Since they are encapsulated,
updates are much easier to test. They have a lot less dependencies to manage!

UI Controls

Security &
Permitions

Backend
Logic

Microapp
Functionality
(Search for Users)

The functionality, like
“Search for Users” is
encapsulated into a
mini-container and
shared across many
di�erent apps.

https://www.progress.com/
https://www.progress.com/openedge

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2019/08 | RITM0053524

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying strategic business applications. We enable customers
and partners to deliver modern, high-impact digital experiences with a fraction of the effort, time and cost. Progress offers powerful
tools for easily building adaptive user experiences across any type of device or touchpoint, award-winning machine learning that enables
cognitive capabilities to be a part of any application, the flexibility of a serverless cloud to deploy modern apps, business rules, web content
management, plus leading data connectivity technology. Over 1,700 independent software vendors, 100,000 enterprise customers, and
two million developers rely on Progress to power their applications. Learn about Progress at www.progress.com or +1-800-477-6473.

 Talk with an Expert

About the Author
Dan Wilson

Dan Wilson is the Senior

Product Marketing Manager for

Mobility technology at Progress.

Dan has extensive experience

growing technology focused

products and services. He got

his first taste of fast-moving

bleeding edge tech when

he joined his first start-up

in 1999. An avid participant

in technology communities,

he contributes to a variety

of open-source projects and

presents at numerous developer

conferences worldwide. Prior to

joining Progress, Dan founded

and directed a consulting

practice for 10 years.

Find Out if Microapps
Are For You—Progress
Kinvey Can Help
We’ll help you understand how microapp technology can help you deliver more
mobile functionality to your users. Our experts can walk you through the concepts
and discuss your infrastructure and current application catalog. Contact a Kinvey
expert today.

https://www.progress.com/
https://www.facebook.com/progresssw/
https://twitter.com/ProgressSW
https://www.linkedin.com/company/progress-software/
https://www.progress.com/kinvey/contact?utm_medium=pdf&utm_source=kinvey-costentmob

