
Best Practices for Modern
Application Architectures
An examination of today’s best practices for software development
crucial to building modern, scalable front-to-backend apps.

E-BOOK

Contents
The Rise of Digital Disruption / 3

Today’s Application Architecture Challenges / 3

Building Modern Digital Apps Isn’t Easy / 4

Tools That Can Help / 5

Development Practices—The Best of Agile and Lean / 7

Embracing Continuous Delivery / 8

Platforming for Success / 9

About Progress Kinvey / 11

The Rise of Digital
Disruption
Companies are using rapidly evolving technology to disrupt traditional business
models and create new ones—everything from Amazon and WeWork, to Uber and
Lyft.

Since the web changed the world in the mid-1990s, we’ve seen mobile,
conversational UX with chatbots and digital assistants like Alexa and Siri, AR, VR
are emerging, and we have functional machine learning and AI in the marketplace.

That phenomenon helps bring into focus the two facets that define “Digital
Disruption”:

• The pace of technological innovation is accelerating

• Markets are segmenting into two classes of companies: disruptors and the
disrupted

Customers expect modern, digital experiences and the companies that deliver—the
disruptors—are the winners.

Applications are the tools disruptors use to:

• Reach customers and deliver better value

• Improve business processes and cut costs

• Accelerate past the competition

Today’s Application
Architecture Challenges
Meeting the demand for modern digital
experiences calls for mastery of four primary
challenges—multichannel, fast iteration, elastic
scalability and adaptability.

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

3

https://www.progress.com/

Multichannels

Customers expect fast, consumer-grade digital experiences, whenever and
wherever. So your challenge isn’t just building “an app”—it’s creating a unified
experience across channels including web, Android, iOS and chat. Further, the
architecture we choose affects our ability to address platforms that we may not
yet know we need to accommodate.

Rapid Iteration

Thanks to the rapid pace of change, gone are the days when it was adequate
to release a piece of software once per year, or even once per quarter. Today’s
customer expects rapid improvements—once per month, once per week—
sometimes even daily.

Elastic Scalability

Scalability is a must for today’s apps. Customers demand full functionality and
availability at all times, however it’s difficult to plan for those events where you
might need instant scalability. For instance, imagine the very realistic scenario
of a marketing campaign that is more successful than anticipated and suddenly
tens of thousands of people are trying to download your app simultaneously.

Adaptability

Due to the rapid pace of innovation and the willingness of companies to try
new things, apps need to be built in such a modular way that they can be easily
adapted to suddenly changing circumstances.

Data Connectivity

A modern application needs to securely connect in real time to legacy data
wherever it’s located.

Building Modern Digital
Apps Isn’t Easy
Common obstacles include resources and legacy
systems and architectures.

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

4

https://www.progress.com/

Resources

Many organizations lack the development resources and processes to continuously
deliver native application experiences across web, mobile and chat at scale.

Legacy Systems

“Out with the old and in with the new” doesn’t apply when ramping up to move
at digital speed. New applications must be integrated with multiple enterprise
and legacy systems—and the valuable data therein—while delivering modern
performance. For example, a legacy ERP system might be old and slow, but it’s
loaded with rich data that you need to leverage while delivering a fast, modern mobile
experience to your customers.

Legacy Architectures

Legacy architectures can’t meet today’s speed and flexibility requirements. The
challenge is that implementing a modern cloud architecture is a daunting task
when you consider ensuring security, scalability, performance and a host of other
considerations.

The answer is a modern application architecture—one that allows for the speed and
agility mandatory for digital transformation.

Tools That Can Help
What options do you have to help deliver these
modern apps?

The Right Language

There are numerous programming languages to choose from and determining which
language to use to build your next modern app is a critical decision.

That’s not to suggest that there is one language with an overmastering advantage
above all others; however, depending on your project goals, one language might be
more appropriate than another.

For example, if your goal is to build an app that relies on machine learning, you might
choose R or Python. If you’re delivering a highly scalable web service, your choice
would likely be Node.js and JavaScript. In any case, you’ll be looking for a language

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

5

https://www.progress.com/

with wide adoption and developer affinity. Avoid niche languages because that makes
it hard to attract and keep talent.

The Value of Open Source

It’s advantageous to leverage open source as much as possible. There are numerous
tasks that are common across many different types of applications. For example,
Node.js users are aware that Express is a common framework for delivering web APIs.
You could spend inordinate amounts of time writing your own web framework, but
why? Someone else has already solved those problems.

There’s a dynamic, vibrant open source community filled with rich expertise.
Leveraging that expertise (and contributing your own to the community in
turn) relieves you of the Sisyphean task of mastering every aspect of software
development. Capitalizing on the advantages of open source frees developers to
focus on what adds value and makes the application unique, rather than solving
common problems.

Productivity Enhancers

Productivity enhancers exist to help you do common, repeatable tasks that add
to your development time and slow down your time to market. For instance, most
software engineers use an IDE because it helps them speed development, debug
their code and produce better results.

UX Builders

It’s certainly possible to write code to develop a good UI. Let’s say you’ve done
that, and part of your design is a button. Upon reflection, you decide you don’t like
the button’s placement and want to move it down a little. If you’re working just in
code, you have to edit an XML or code file, change the number of pixels relative to
the position, which in turn moves the button down. After that, you need to review
your work and decide if the placement is ideal this time. Repeating that process
multiple times is tedious and time-consuming, especially considering today’s rapid
development cycles.

UX builders provide an easy way to work in a WYSIWYG environment and move
things to match your vision for the app while saving time.

Integration Tools

It’s likely you’ll have existing data that you’ll need to make available to your modern
apps. Yet traditional enterprise data sources are not optimized for modern application

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

6

https://www.progress.com/

architectures and multichannel experiences, and don’t meet user performance
expectations. Integration tools allow you to easily integrate your modern apps into
any existing data source, transform the data to fit multichannel experiences, and
deliver existing enterprise data with cloud-native performance.

SDKs

A good SDK or library will take common tasks that might take hundreds of lines of
hand-coding and give you something that you can use by writing perhaps just a few
lines of code.

Cross-Platform Frameworks

As discussed earlier, when developing a modern app you need to contend with
multiple platforms and their differing programming languages and frameworks. iOS
uses Objective C or Swift, Android uses Java or Kotlin, chat uses a variety of API
formats and many other frameworks. Cross-platform frameworks allow you to write
code for all the different channels you want to make use of.

The advantages include better utilization of development resources by writing once
and deploying on many platforms. For instance, if you wanted to refine a bit of your
Android UX, you could do that while still being able to share the bulk of your code.

Development Practices—
The Best of Agile and
Lean
An agile mindset and staying lean doesn’t mean
rigid adherence to any one methodology.

Software development should be done with an “agile mindset.” Agile is touted as the
way to write software, and it means different things to different people. In this context,
we’re not talking about agile methodology, but being and staying agile. Core principles
of an agile mindset include:

• Build and iterate fast

• Get continuous feedback from your colleagues, sales teams and users

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

7

https://www.progress.com/

• Incorporate that feedback into iterations

• Build more with less

When development teams adopt Agile, there are generally three patterns they follow:

1. Bolt Agile onto their existing processes—which typically fails.

2. Adopt a specific Agile methodology, whether it’s Scrum or Kanban or extreme
programming, and replace their legacy methods entirely, even if it doesn’t
always make sense.

3. Look at what other teams have done and try to incorporate that to fit how their
team works and communicates.

No one methodology is appropriate for every team or organization. Find one that
is the closest fit and makes sense, and then iterate on that methodology. Review
each completed project, see what worked and what didn’t, and change processes
accordingly.

Stay Lean

The most critical thing to remember from Lean is “seek feedback early and often,”
from focus groups, customers, prospects and the sales team, and continually adjust
your plan based on that feedback. Doing so will help tremendously toward avoiding
false starts and dead ends. Measure your results to determine if you are indeed on
the right course.

Next, utilize MVP effectively, focusing on the key words “minimum” and “viable.” You
want to produce the minimum unit possible that will deliver a viable result that can be
tested, so you can get that all-important feedback.

Embracing Continuous
Delivery
Continuous delivery has two subcategories.
Embracing both results in continuous value.

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

8

https://www.progress.com/

Continuous Integration

The point of continuous integration is to continually integrate any code you write into
the mainline branch of your source repository, under the principal that the mainline
branch should be deployable at any time should that become necessary. You should
also rely heavily on automated testing.

Continuous Deployment

In its strictest sense, continuous deployment means that as soon as you merge
something into your master branch, it gets deployed immediately into production or
is released to your customer. While this is a solid deployment practice, it isn’t always
practical. What’s important is to deploy on a regular basis.

At Progress Kinvey, we deploy changes to our production service multiple times per
week—approximately 40 per month. The SDK team deploys a new version every two
weeks.

When you deploy code that frequently, it doesn’t mean that everything is generally
available when you deploy. But using tools such as feature flags, A/B testing and
early adopter/beta programs lets you get the code out to users for validation, without
making it GA.

The Point of Both is Continuous Value

You engage in continuous integration and deployment to deliver continuous value to
the customer. A partial feature that delivers value is better than waiting until the entire
feature vision is complete. You also reduce the risk of failures in the complete feature
set.

Platforming for Success
Leveraging the cloud and serverless.

The Cloud

The cloud offers several unique benefits to developers and in turn, customers:

• Provision only what you need

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

9

https://www.progress.com/

• Elastic scale based on utilization removes uncertainty from capacity planning
and offers protection from unanticipated spikes in demand

• If you architect your app to take advantage of the cloud’s redundancy by
default through multiple regions and multiple availability zones, you get built-in
redundancy and failover

• Thorny problems, such as security, are entrusted to the experts at your cloud
partner, freeing you to focus on application value

Serverless

With the cloud, the base unit is a virtual service—you provision a virtual machine,
deploy your code there, set up your service, get your OS, etc. Serverless is a platform
for you to implement application logic and focus on the code, not the infrastructure.

Serverless is not the same thing as “Function as a Service” (FaaS). That is certainly
one model of serverless, but not the only one. Serverless is any paradigm that allows
you to focus on delivering value and not on hardware or resources.

Application Platform

This is where everything comes together. At the platform level, the app frontend is
connected to the various backend services, supports Agile and continuous workflows
and includes productivity enhancers to automate important but repeatable tasks,
while the developer focuses on the unique value of the application.

Application Architecture

Two key architectural patterns are decoupled
development and layers of abstraction.

Decoupled Development

When developing a modern app, it’s important to separate the project into
components so team members can focus on specific areas to increase velocity and
reduce risk. For instance, if you’re developing an app that needs to connect to an
Oracle database, ordinarily you’d need to wait for IT to provision an Oracle server. In
a decoupled development model with the frontend separated from the backend, the
developer can design the frontend working against mock data, while the backend

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

10

https://www.progress.com/

developer works on the integration with the Oracle database. At the end they have a
middle layer that helps join the two with little effort.

Layers of Abstraction

Layers of abstraction provide frontend developers with a single interface. The idea
here is to enable the developer to access many different data sources or APIs, with
middleware acting as a façade for backend functionality. This eliminates the frontend
developer from having to master multiple backend systems.

Functions as a Service

With FaaS you write the smallest amount of code possible and invoke that from your
client app, with the key benefit being that each function can scale independently
based on its unique needs. For instance, a hashing function that is used for
authenticating users and is CPU-intense would have a different scaling profile than
something that is making an external call and spends most of its time at idle waiting
for I/O to complete.

Microservices

These small, lightweight, single-purpose services should be designed to handle a
distinct subset of the overarching application’s functionality. The thing to remember
about developing microservices is the word “micro”—microservices can become hard
to maintain if you try to give an individual microservice the functionality of several.

Cloud Services

These no-code services implement some backend app need, such as cloud data
store, file store, user management and integrations with external data sources and
SSO providers. This is another tool to help you avoid becoming bogged down with
details that don’t add value to the app.

About Progress Kinvey
A modern platform for rapidly building complex
enterprise apps and scalable consumer app
experiences.

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

11

https://www.progress.com/

The approaches discussed in this paper can all be applied with Progress Kinvey.
Kinvey breaks the mold of traditional approaches to innovation by being purpose-
built to deliver enterprise-grade multichannel experiences running on a modern
serverless cloud platform.

With Kinvey, use a single language to write once for native apps across multiple
platforms. Use web-based development and a rich collection of UI components to
build truly native apps with NativeScript and your choice of JavaScript, TypeScript,
Angular or Vue.js.

Easily build a modern serverless backend that will auto-scale to the highest levels,
have the flexibility to support frequent changes, and integrate easily into Systems of
Record and authentication using a configuration-based low-code approach.

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

12

https://www.progress.com/

About the Author

Michael Salinger is Sr. Director of Software
Engineering for Progress Kinvey, where
he leads the team responsible for the
development of the Kinvey Serverless Cloud.
Michael has extensive experience in cloud,
serverless technology, web, mobile and
backend systems.

Progress / Kinvey

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

13

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

2019 | RITM0055419

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying strategic business applications. We enable customers and

partners to deliver modern, high-impact digital experiences with a fraction of the effort, time and cost. Progress offers powerful tools for easily

building adaptive user experiences across any type of device or touchpoint, the flexibility of a cloud-native app dev platform to deliver modern apps,

leading data connectivity technology, web content management, business rules, secure file transfer, network monitoring, plus award-winning machine

learning that enables cognitive capabilities to be a part of any application. Over 1,700 independent software vendors, 100,000 enterprise customers,

and two million developers rely on Progress to power their applications. Learn about Progress at www.progress.com or +1-800-477-6473.

Explore Kinvey

https://www.progress.com/
https://www.facebook.com/progresssw/
https://twitter.com/progresssw?lang=en
https://www.linkedin.com/company/progress-software/
https://www.progress.com/kinvey

